
PenShaft: Enabling Pen Shaft Detection and Interaction for
Touchscreens

Junwei Sun

junwei.sun@huawei.com

Huawei HMI Lab

Canada

Margaret Foley

mjfoley@uwaterloo.ca

University of Waterloo

Canada

Qiang Xu

qiang.xu1@huawei.com

Huawei HMI Lab

Canada

Chenhe Li

chenhe.li@huawei.com

Huawei HMI Lab

Canada

Jun Li

jun.li3@huawei.com

Huawei HMI Lab

Canada

Pourang Irani

irani@cs.umanitoba.ca

University of Manitoba

Canada

Wei Li

wei.li.crc@huawei.com

Huawei HMI Lab

Canada

Figure 1: a) Capacitive materials are applied to a pen shaft to create a PenShaft device. b) When the pen shaft is placed on a
touchscreen, the tablet can detect the pen. In a drawing application, PenShaft can be used c) to change the pen stroke color by
rotating the pen and d) as a brush.

ABSTRACT
PenShaft is a battery-free, easy to implement solution for augment-

ing the shaft of a capacitive pen with interactive capabilities. By

applying conductive materials in a specific pattern on the pen’s

shaft, we can detect when it is laid on a capacitive touchscreen.

This enables on-pen interactions, such as button clicks or swiping,

and whole-shaft interactions, such as rotating and dragging the

stylus. PenShaft supports at least six interactions, freeing the pen

from having to interact with the layers or menus of a conventional

user interface. We validate a device’s capability to detect these six

interactions with all but two interactions achieving a success rate

above 95%. We then present a series of applications to demonstrate

the flexibility and utility of these interactions when using the pen.

CCS CONCEPTS
• Human-centered computing→ Touch screens.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

AH2021, May 27–28, 2021, Geneva, Switzerland
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9030-9/21/05. . . $15.00

https://doi.org/10.1145/3460881.3460934

KEYWORDS
pen shaft, sensing, touchscreen

ACM Reference Format:
Junwei Sun, Margaret Foley, Qiang Xu, Chenhe Li, Jun Li, Pourang Irani,

andWei Li. 2021. PenShaft: Enabling Pen Shaft Detection and Interaction for

Touchscreens. In 12th Augmented Human International Conference (AH2021),
May 27–28, 2021, Geneva, Switzerland. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3460881.3460934

1 INTRODUCTION
The pen allows for precise and natural interactions with a touch-

screen for tasks such as writing or drawing. However, current

applications require additional graphical user interface widgets for

changing attributes (e.g. stroke thickness and colour) or switch-

ing between modes, which can be slow and error-prone [12, 34].

Popular methods for increasing the pen’s interactive capabilities in-

clude bimanual pen and touch input [4, 15, 21, 40, 41], augmenting

the pen with auxiliary sensing capabilities, such as tilt or pressure

[26, 37], and detecting grip changes in the background for adjusting

the UI to the user’s tasks [14, 31–33]. But such enriched capabilities

are only possible with active pens (such as the Apple Pencil [1]

and Surface Pen [22]), which are powered and operate on a spe-

cific platform. These features are absent in passive pens, which are

unpowered and can work with any capacitive touchscreen.

We introduce PenShaft: a battery-free solution for detecting and

interacting with a pen shaft on a touchscreen. Few works have pre-

viously studied using the pen shaft for input on a touchscreen. With

https://doi.org/10.1145/3460881.3460934
https://doi.org/10.1145/3460881.3460934

AH2021, May 27–28, 2021, Geneva, Switzerland Sun and Foley, et al.

PenShaft, the functionality of a passive capacitive pen is greatly

augmented to enable whole-shaft interactions, such as using the

pen to crop and reorient an image, and on-pen interactions, such

as swiping along the pen shaft to change input modes or invoke

hotkeys. Since the pen shaft is a physical object, eyes-free inter-

action is also possible. The pen can be further used as a brush or

eraser in a drawing application (Figure 1d).

These interactions, typically unavailable on a passive capaci-

tive pen, are enabled by using conductive materials to facilitate

feedthrough capacitance. To transfer input from the pen’s shaft to

the touchscreen, we wrap conductive materials around a regular

pen with at least one flat surface on the shaft to create “contact

points”. These points are connected with another strip of conduc-

tive material. When the pen is placed on a capacitive touchscreen

while being touched, these contact points appear as multiple touch

events in a straight line, acting as a tag and allowing the system

to detect the pen shaft (Figure 1a). Additionally, “buttons” can be

constructed by adding contact points independent from the tag

points, which enable clicking and swiping interactions (Figure 1b).

A 6-participant experiment was conducted to validate our Pen-

Shaft design and its interactions, finding that all but two interactions

achieved a success rate above 95%.

Our contributions include a) a battery-free method to enhance a

passive capacitive pen by instrumenting the pen’s shaft for whole-

shaft and on-pen interactions; b) a validation of these interactions in

a user study; and c) a demonstration of applications that incorporate

and benefit from PenShaft.

2 RELATEDWORK
PenShaft draws inspiration from techniques that augment the pen

with novel sensing capabilities, and from touch-enabled input de-

vices. We also discuss methods that have employed feedthrough
capacitance sensing to enhance tangibles for touchscreens, as Pen-

Shaft also uses this capability to enable detection and interaction.

2.1 Pen-Based Interactions
There is a significant amount of research into enhancing pen-based

interactions.

2.1.1 Pen Shaft Interaction. Researchers have developed means

for augmenting the pen shaft with sensing capabilities to enable

novel interaction techniques. In one collection, the pen shaft was

designed to detect grip changes [14, 31–33] which could then be

used to infer a user’s action and enable mode shifts or invoke menu

commands. These works focus on implicit detection or background

sensing [41], but do not take explicit advantage of the sensing on

the pen shaft to control an application’s interactive features.

We are aware of three works that examine explicit pen shaft

control. Zhang et al. also implemented an input when the device is

laid on a tablet to display pen settings [41]. Though it is not a pen-

like device, Conté [8, 35], a device inspired by the Toolstone [28],

enables interactions where the device is laid flat on a touchscreen

to lay guidelines or control menus. These augmentations require a

power source, and are not easily adaptable to passive capacitance

pens. They also do not explore the performance of explicit pen shaft

control as we do, nor do they instrument a pen shaft in the same

manner as PenShaft.

2.1.2 Enhancing Pen Sensing Capabilities. Beyond enhancing the

pen shaft, researchers have identified many means of augmenting

the pen’s degrees-of-freedom with auxiliary sensing methods, such

as pen tilt [37], pressure [26], roll [2], or by using two or more

sensing modalities [13], such as pressure and tilt in conjunction

[1]. Xu et al. [38] demonstrated the use of voice input on a pen to

control its features while Fellion et al. proposed FlexStylus, which

supports rotational deformation of the pen, making it easier to

create digital art [9]. Pen interaction has also been enhanced with

haptic feedback [7, 19].

2.1.3 Pen + Touch Interaction. Combining pen and touch input

[4, 15] has been shown to significantly enhance pen interactions

on a touch device [21, 40, 41]. Pfeuffer et al. [24] combined pen,

touch, and gaze input for a target acquisition task. Pfeuffer et al.

[25] further proposed thumb and pen interaction on tablets, in-

cluding editing and formatting spreadsheets, web navigation and

object manipulation. Romat et al. [29] explored data visualization

metaphors using pen and touch as input.

These works demonstrate new possibilities when pen sensing is

combined with touch. In contrast, our work primarily focuses on

interactions that are possible when only the pen shaft is augmented

for explicit interaction with a user interface.

2.2 Feedthrough Capacitance Sensing
Significant advances in capacitance sensing have enabled a host of

novel devices and interactive capabilities [11].We briefly present ap-

plications of feedthrough capacitance sensing, as used in PenShaft,

which uses a layer of indirection to relay input from an inactive

surface onto a capacitance sensing surface.

Rekimoto was the first to propose using feedthrough capacitance

sensing to create capacitance tags, where portions of an object

are covered with conductive material so that touch input can be

redirected to an underlying adjoining capacitive display [27]. A

drawback of this approach is that the tangible can only be detected

when it is being touched [11]. Using passive sensing also greatly

simplifies tangible design, as no additional components (such as a

powered battery) beyond the tangible and the conductive material

are required.

The typical method of instrumenting tangibles is to arrange

conductive materials in unique configurations on the bottom of

the object to create false “touch points” that are used as identifiers

[6, 10, 39]. Touchscreen devices can use the identifier to activate

specific functionalities and detect the location and rotation of an

object. Researchers have instrumented everyday objects such as a

knob [18], drawing tools [3], game pieces [5], and a smartphone

[23]. Ikeda and Tsukada created a marker that can be recognized

by a touchscreen and a camera [16].

We are not aware of any works that instrument a pen shaft for

feedthrough capacitance sensing on an interactive surface to enable

“buttons”, “sliders”, or other actions as we do.

3 PEN SHAFT CHARACTERISTICS
We describe the characteristics of PenShaft, beginning with basic

pen shaft detection, and how basic detection can be extended for

further interaction.

PenShaft: Enabling Pen Shaft Detection and Interaction for Touchscreens AH2021, May 27–28, 2021, Geneva, Switzerland

3.1 Basic Pen Shaft Detection
Capacitive touchscreens operate on the principle that when a hu-

man finger or body part comes close to the touchscreen, the body

either becomes a capacitor that drains current from the screen

surface, or absorbs the electromagnetic field [36]. Sensors in the

touchscreen are able to detect touch events, and calculate the tra-

jectory of a moving finger from repeated touch events.

Rekimoto [27] first proposed leveraging this principle to create

capacitance tags, allowing tangible objects to be detected on a touch

screen through the use of what Schmitz et al. term forwarding
conductors, or a forwarder [30]. The forwarder is applied to the

tangible so that it provides a path from a human finger to the

touchscreen, thus “forwarding” the touch to the touchscreen.

To detect the pen shaft, we use a conductive material (copper

tape) as a forwarder. We distinguish the pen from regular touch

or multi-touch events by wrapping the material around the pen to

create a minimum of three contact points. These contact points are

connected with another strip of conductive material, so any touch

along the conductive strip is forwarded to the touchscreen.

The pen is identified when three or more touch events appear

on the touchscreen in a straight line. This pattern of touch events

is distinguishable from regular touch interaction as it is difficult for

users to place three or more fingers on a touchscreen in a perfectly

straight line at the exact distances between the contact points.

3.2 Design Constraints
We place several constraints on the design of PenShaft devices.

First, contact points cannot be placed too closely together. If con-

tact points are not kept at a certain minimum distance apart, the

touchscreen will not be able to distinguish each contact point as

a separate touch event when the pen is placed on it. The specific

minimum distance required between touch events varies for each

device, but on our testing device, this distance is 1cm.

Second, there is a limit on the number of contact points that

can be placed on a pen shaft, as current touchscreen devices only

support a fixed number of simultaneous touch events. Our testing

device is limited to ten simultaneous touch events.

The third constraint is the design of the pen itself. Through

testing, we have found that pens with cylindrical shafts result in

degraded tracking performance. Users find it difficult to grip a cylin-

drical shaft while maintaining good contact with the touchscreen.

We thus recommend using a pen shaft with at least one flat sur-

face, which facilitates consistent contact with the touchscreen. Our

prototype uses a pen with a cuboid shaft.

3.3 On-Pen Interaction
We further extend basic pen shaft detection to create “buttons” on

the pen shaft, greatly increasing PenShaft’s interaction capabilities.

We propose the design in Figure 2a. We place conductive ma-

terials around the end of a pen shaft in three places to create the

contact points P1, P2, and P3, which are connected with additional

conductive material. Since the distances between P1 and P2 (d1) and
P2 and P3 (d2) are different, the pen’s orientation can be determined.

Note that the P1 to P3 area is not required to be the same size as

in Figure 2. This area can be as small or as large as one wishes, so

long as d1 and d2 are not equal. Buttons are then implemented by

Pa Pb Pc P1 P2 P3

d1 d2

a)

b)

Figure 2: a) A diagram and b) a prototype of PenShaft device
with buttons.

adding another three contact points to the front of the pen shaft, Pa ,
Pb , and Pc . These points are not connected to each other, or to the

points P1 to P3. Figure 2b shows a prototype pen implementing this

design. To add regular pen tip interaction to our PenShaft prototype,

we attached a rubber tip to the tip of the pen and ran a conductive

cable through the pen barrel from the pen tip to the P1-P3 area.

This pen tip will only function if the user’s palm is contacting the

P1-P3 area.
When users place the pen shaft on a touchscreen while holding

the P1 to P3 area, P1, P2, and P3 are detected. The system recognizes

the pen from seeing these three points in a straight line. We can

also detect the direction the pen is facing using the asymmetric

layout of d1 and d2. If the user places another finger on Pa , Pb , or
Pc , a fourth contact point will be detected. We can determine that

this contact is part of the pen because it extends the straight line

formed by P1, P2, and P3 Which of the three buttons was pressed

can be distinguished based on the fourth contact point’s distance

from P1, P2, and P3. Sliding gestures can also be detected when one

button press occurs after another within a predefined time span.

The design shown in Figure 2 can be modified. The number of

buttons can be smaller or larger than three, based on the amount

of space available on the pen, and the minimum distance a device

requires between touches.

3.4 Combining Pen Shaft and Touch
Interaction

Various works have proposed combining pen and touch input from

the non-dominant hand [15], taking advantage of the precision of

the pen tip and finger dexterity. With PenShaft, we extend pen and

touch interaction to a larger design space. When placing PenShaft

on the screen, users can perform any of the above-mentioned in-

teractions with one hand, and use the other hand to perform other

tasks.

4 FUNDAMENTAL INTERACTIONS
To help design PenShaft interfaces, we define six fundamental Pen-

Shaft interactions. Interactions are divided into two categories: in-

teractions that use the entire pen shaft (Shaft+Drag, Shaft+Rotate),

AH2021, May 27–28, 2021, Geneva, Switzerland Sun and Foley, et al.

pen interactions.jpg

Figure 3: Whole-shaft interactions, including a) Stationary,
b) Shaft + Drag, c) Shaft + Rotate

and interactions that use on-pen interaction, as defined in the pre-

vious section (Shaft Click, Shaft Click+Hold, Shaft Slide). In the

following sections, interactions are described using the pen design

in Figure 2.

4.1 Stationary
The system detects the pen when it is placed on or lifted off the

touchscreen (Figure 3a). This interaction is the starting point for all

other five interactions. These interactions can only be performed

and detected after the pen has been placed on the touchscreen.

Stationary can be used to split the screen into two views when the

pen is placed on the screen.

4.2 Shaft + Drag
Once the pen is placed on the touchscreen, it can be reliably dragged

to another location on the screen, then lifted (Figure 3b). Shaft +

Drag can be used as a “brush” to select or erase objects.

4.3 Shaft + Rotate
Once the pen is placed on the touchscreen, it can be rotated (Figure

3c). Shaft + Rotate can be used to rotate content on the screen, such

as a map or a picture, or could be used like a control knob.

4.4 Shaft Click
While the pen is placed on the touchscreen, the user presses and

releases Pa , Pb , or Pc to “click” a button (Figure 4a). This interaction
includes tapping on a contact point any number of times, or tapping

on multiple contact points at once. Shaft Click allows for a great

number of interactions, such as menu navigation.

4.5 Shaft Click + Hold
While the pen is placed on the touchscreen, the user presses Pa , Pb ,
or Pc but does not release their finger (Figure 4b). This interaction

is an extension to Shaft Click, and can be considered equivalent to a

“long press”. The dwell time required to activate this interaction can

be adjusted for different applications, or for a user’s preferences.

Shaft Click + Hold can be used for opening a menu with additional

options, or increasing line width while a button is held. It can also

be combined with Shaft + Drag to implement a form of rectangular

select.

Figure 4: On-pen interactions, including a) Shaft Click, b)
Shaft Click + Hold, c) Shaft Slide

4.6 Shaft Slide
While the pen is placed on the touchscreen, the user slides their

finger from one contact point to another (Figure 4c). For example,

the finger can be slid from Pa to Pb , Pa to Pc , Pb to Pc , Pc to Pa ,
Pb to Pa , and so on. Shaft Slide can be used for adjusting a slider

(adjusting system volume, for example).

Theoretically, the maximum number of sliding gestures available

on a pen is a 2-permutation of n with no repetitions, where n is the

number of buttons on the pen. For our prototype, this means six

sliding gestures are available, which offers a wide selection of slide

actions to map to UI actions.

5 VALIDATION STUDY
We conducted an assessment of each PenShaft interaction. Our ob-

jectives were to validate the performance of our proposed PenShaft

implementation and the system’s ability to detect our interactions.

We also evaluate the usability of the PenShaft interactions when

performed by users and gather feedback about the interactions and

PenShaft use in general.

5.1 Participants
6 participants (2 female, all right handed) volunteered from within

our organization. Participants ranged in age from 23 to 36 (m=30.2,

sd = 5.8).

5.2 Apparatus
We used a Samsung Galaxy Tab A 10.1 running Android 9.0. Each

task was implemented as a custom Android application, and all

touch events were logged.

The prototype pen used for the study (as seen in Figure 2) mea-

sured 116 mm in length and 8 mm in width. It was instrumented

PenShaft: Enabling Pen Shaft Detection and Interaction for Touchscreens AH2021, May 27–28, 2021, Geneva, Switzerland

Figure 5: The experimental UIs for the a) Stationary, b) Ro-
tate, c) Click and Click + Hold, and the d) Slide task

with the design in Figure 2b, and had three contact points spaced

16 mm apart for use as buttons.

5.3 Tasks
Each task evaluated a different PenShaft interaction.

Stationary — Participants placed the PenShaft device on ran-

domly placed rectangles 30 times. These rectangles were 800px

wide and 180px high. A trial was an error if the device was not

fully within the rectangle. This task evaluated participants’ ability

to place the device on a touchscreen at random locations and ori-

entations, and validated the system’s ability to detect the device

when placed on the touchscreen.

Shaft + Drag — A 1D Fitts’ Law dragging task similar to [17]

and [20] was evaluated with one target width (W = 120px) crossed

with 4 distances (D = 400px, 800px, 1200px, 1600px). id ranged

from 2.12 to 3.46. We chose to not vary target width, as this task is

meant to evaluate the dragging interaction, not target acquisition.

Participants completed 10 trials for each distance.

Shaft + Rotate — Two arrows in green and red were displayed on

the screen (Figure 5a). Participants rotated the green arrow tomatch

the red arrow in a single motion. If the green arrow was not within

5 degrees of the red arrow’s rotation at the end of a motion, the trial

was considered an error, and participants had to redo it. Participants

were shown feedback after every trial to indicate success or failure.

Four angles were tested (30°, 60°, 90°, and 120°) in both clockwise

and counterclockwise directions. Participants completed 10 trials

in both directions for each angle. The order of rotation directions

was randomized for each participant.

This task is similar to one used by Zhao et al. [42], though our

task does not incorporate object translation and scaling.

Shaft Click — Participants were shown the screen in Figure 5b.

When a button was highlighted, they tapped that button on the

PenShaft device. Participants had to press each button (a, b or c)

10 times. The order of button presses was randomized for each

participant. Participants were shown feedback after a button press

to indicate success or failure.

Shaft Click + Hold — This task was identical to the Shaft Click
task, but participants had to hold a button for 1 second. A counter

was displayed in the top left corner of the screen. When this counter

reached 1000 (milliseconds), a trial was complete. Again, partici-

pants had to press each button 10 times, with press order random-

ized.

Shaft Slide — Participants were shown the screen in Figure 5c,

with an arrow indicating the start, end, and direction of a sliding

gesture to complete. Feedback was shown to indicate whether a

gesture was successfully completed. Participants performed each

of the six sliding gestures (A-B, A-C, B-C, C-A, C-B, and B-A) 10

times, in random order.

5.4 Study Design
A within-subjects design was used. The primary independent vari-

able was task, with six levels: stationary, drag, rotate, click,

hold, and slide. Participants completed 30 stationary trials, 40

drag trials, 80 rotate trials, 30 trials each for click, and hold, and

60 slide trials, for a total of 270 trials per participant.

For all tasks, the primary measures were Trial Time and Error
Rate. Trial Time is the time from the start of the trial, to trial comple-

tion. Error Rate is the percentage of trials where an error occurred.

We collected data for the subjective measures Fatigue, Comfort, Ease
of Use, Perceived Speed, and Perceived Accuracy. Subjective rankings
used a scale from 1-7, where a higher score meant lower Fatigue,
higher Comfort, better Ease of Interaction, and higher Perceived
Speed and Perceived Accuracy. For rotate and slide, we also asked

participants to rank each rotation angle or slide gesture for each

subjective measure. In these rankings, a lower rank was better.

5.5 Procedure
The experiment consisted of a single 40 minute session. Before

beginning each task, the experimenter demonstrated the task to

participants, who then completed a training block with 5 trials

to familiarize themselves with the PenShaft device and the tasks.

Participants completed the tasks in a fixed order.

After completing each task, participants completed a survey to

gather subjective data. For the Rotate and Slide tasks, participants

ranked each rotation angle and sliding gesture for each of the

subjective measures.

6 RESULTS
For each task, trials with a Trial Time more than 3 standard devia-

tions from the mean were considered outliers and excluded. In all

tasks except stationary, this exclusion was performed for each

condition. Three outliers (1.67% of data) were removed for station-

ary, 3 (1.25%) for drag, 6 (1.36%) for rotate, 6 (2.86%) for click, 4

(1.9%) for hold, and 8 (2.22%) for slide.

6.1 Stationary
The average time per trial was 1.00s, with an average error rate

of 1.19%. Participants rated stationary very favourably, with all

subjective measures having an average rating above 6.

6.2 Shaft Drag
The average trial time was 1.57s. Participants were fastest when d

= 400px (1.27s), and slowest when d = 1600px (1.93). All values of d

had an Error Rate of 0%. Again, participants rated drag favourably,

with average ratings above 5.5 for all subjective measures.

AH2021, May 27–28, 2021, Geneva, Switzerland Sun and Foley, et al.

1

3

5

7

Stationary Drag Rotate Click Hold Slide
Task

R
at

in
g

Fatigue Comfort Ease Speed Accuracy

Figure 6: Average Task Ratings (a higher rating is better)

6.3 Shaft Rotate
Each trial took 2.04s on average, with an overall Error Rate of 7.08%.
Participants were fastest when rotating 30° (1.53s), and slowest

when rotating 120° left or right (2.52s). -60° had the lowest Error
Rate (1.67%), and 90° the highest (13.33%).

Participants rated rotate neutrally for Ease of Interaction, Per-
ceived Speed, and Perceived Accuracy, but rated this gesture some-

what negatively for Fatigue and Comfort. -30°was ranked highly on

average for all subjective measures, while 120°was ranked last for

all subjective measures. In general, participants preferred counter-

clockwise rotations, and disliked larger rotations.

6.4 Shaft Click
Overall, each trial took 1.96s, with an average Error Rate of 0%.

Button c was the fastest (1.83s), and a was the slowest (2.06s). All

buttons had an Error Rate of 0%. Participants rated click somewhat

favourably for all measures except Fatigue and Comfort, which were
rated neutrally.

6.5 Shaft Click + Hold
Each trial took 2.58 secs (1.58s when subtracting hold time), with

an average Error Rate of 1.94%. Button c was the fastest, and a

was the slowest by 614ms. Buttons c and b had the lowest Error
Rates (0.83%), and button a had the highest (4.17%). Participants

rated hold favourably for all measures except Fatigue and Comfort,
which were rated neutrally.

6.6 Shaft Slide
Each trial took 2.27s on average, with a 12.8% Error Rate overall.
Gesture b-c was the fastest with an average Trial Time of 2.06s, and
Gesture c-a was slowest (2.44s). b-c also had the lowest average

Error Rate (3.33%), and b-a had the highest (20.19%).

Participants rated slide somewhat favourably for all measures

except Fatigue and Comfort, which were rated neutrally. b-c ranked

high on all subjective measures, and c-a was ranked poorly for all

measures. Gestures where the finger moved down the shaft ranked

higher than gestures where the finger moved up the shaft.

split.PNG

Figure 7: a) The screen is split into two views at the pen’s
location. b) The views are resized by dragging the pen.

7 APPLICATIONS
We designed several applications to demonstrate PenShaftś funda-

mental interactions, and how PenShaft can be used to augment pen

interaction.

7.1 Screen Splitting
Users can split the screen into two views by placing the PenShaft

device on the tablet screen, with the split appearing at the pen’s

location (Figure 7a). The split views can be resized by acquiring the

dividing line with the pen, and dragging it back and forth (Figure

7b). When using the pen tip with a full screen application, e.g. a

drawing app, a notes app is automatically opened on the other side

of the screen by using PenShaft to split the screen.

7.2 Colouring Application
In a simple colouring application, PenShaft is used as a tangible

eraser. When the device is dragged across the touchscreen, the

selected color is erased. This interaction is similar to how artists

use physical materials for painting.

7.3 2D Object Manipulation
PenShaft enables 2D object manipulation without requiring addi-

tional menus or widgets to change modes. In our example appli-

cation, objects are selected by tapping on them with the pen tip.

The selected object can then be rotated by rotating the PenShaft

device (Figure 8a), scaled by swiping the finger up and down the

shaft (Figure 8b), and translated by dragging the device. Selected

objects can also be translated with the pen tip.

7.4 Enhanced Drawing Application
We enhance a standard drawing application with PenShaft. When

the pen is placed on the touchscreen, a menu appears next to the

pen, allowing users to change the pen’s mode, its attributes (similar

to Zhang et al. [41]), and global options. The menus are navigated

by clicking on the “buttons”. The user can return to the top-level

menu by swiping from the top button to the bottom button. By

moving these menus to the PenShaft, the user can modify the pen’s

PenShaft: Enabling Pen Shaft Detection and Interaction for Touchscreens AH2021, May 27–28, 2021, Geneva, Switzerland

Figure 8: A selected object can be a) rotated, by rotating the
PenShaft, and b) scaled, by swiping the finger up the pen
shaft.

mode and attributes without interacting with GUI elements located

elsewhere on the screen.

The pen can switch between three modes: Brush, Erase, and

Draw. In the Brush and Erase Modes, users drag the pen to either

color large portions of the screen, or erase drawings. Brush and

Erase modes remain active while the user presses that respective

button. Once the button is released, the menu reappears.

Users can modify the color, thickness, and transparency of the

pen’s stroke. Color is modified by individually selecting the red,

green, or blue components, and rotating the pen. A red, green, or

blue value of 0 is mapped to 270°, and a value of 255 is mapped

to 90°. Users can view color changes in a square at the top of the

screen. Thickness is modified by selecting one of three options;

small, normal, and large. Transparency is modified by swiping the

finger up or down the pen shaft.

Finally, users can modify the device’s brightness by dragging the

pen shaft horizontally, and the device’s volume by tapping “Volume

Up” and “Volume Down” buttons on the pen shaft. There is also

an option to toggle which side of the pen the menu appears on, to

accommodate left-handed and right-handed users. Please refer to

the supporting video for more details about this application.

7.4.1 Eyes Free Expert Mode. The drawing application also has

an eyes-free mode, where menu options are accessed by quickly

tapping the buttons, similar to a shortcut key. For instance, one

could access the color modifier by tapping button B, then button A

in rapid succession.

8 DISCUSSION
8.1 Validation Results
All tasks but two had an overall error rate of less than 5%. The

elevated error rates in the rotation task are not overly surpris-

ing, given that participants found larger rotations of 90°or more

to be fatiguing and uncomfortable. When performing these larger

rotations, the starting position of the hand and wrist becomes im-

portant, as the user may be forced to contort the hand and wrist

into uncomfortable positions to complete the rotation. Since all our

participants were right-handed, it is also natural that they would

find counterclockwise rotations to be more comfortable.

As for the sliding task, it is evident that some sliding gestures are

more difficult to complete than others. This is not overly concerning,

as implementing all possible sliding gestures in an interface is

impractical. The least error-prone gestures, such as B-C and A-B

would be best suited for applications.

8.2 Design Considerations and Limitations
While observing participants in the validation study, several design

considerations for future PenShaft applications emerged. Using

PenShaft for extended periods is fatiguing. Participants noted that

their hands and wrists became increasingly sore after using the

the PenShaft buttons for the clicking, clicking and holding, and

sliding tasks. Applications that use PenShaft should keep aim to

keep PenShaft interaction short.

The rotation task results indicate that applications should refrain

from requiring users to make large rotations with the PenShaft

device, as users do not find these rotations comfortable. The sliding

task results also indicate that sliding down the pen shaft is preferable
to sliding up.

We also observed that the pen blocks content when placed on

the touchscreen, an issue we term “the fat pen problem”. Devel-

opers must take this into consideration when designing PenShaft

interfaces, though the fat pen problem could be mitigated to some

extent with eyes-free interaction.

The greatest limitation of the study is that we were unable to

recruit a large number of participants due to the COVID-19 pan-

demic.

8.3 Future Work
In future iterations, many aspects of PenShaft could be improved.

For instance, it is possible to differentiate between each pen side

by varying the number of contact points on each side, and the

distance between them. This would enable similar functionality as

Conté [8, 35], where different functions are mapped to different

sides of a device. If the pen were actively powered, many more

augmentations could be made to better track the pen shaft, or

enable 6DOF interaction.

It is important to examine the ergonomics of PenShaft. In the val-

idation study, one participant found it more comfortable to operate

the PenShaft device with two hands, instead of one. Several par-

ticipants also noted clicking and sliding on the pen shaft with one

hand for prolonged periods was tiring. It is important to examine

which grips are most comfortable and efficient for users. The spac-

ing between buttons is also important for PenShaft ergonomics, as

it determines how far users need to stretch their fingers to operate

the buttons.

The transition cost for switching between a typical pen grip and

PenShaft is also critical. While a two-handed grip may be more

comfortable, it may take more time to transition to and from this

grip. These costs are critical if PenShaft were to be used in real

world applications. Strategies for switching between normal pen

use and PenShaft should be examined to determine what is more

efficient and ergonomic for users.

AH2021, May 27–28, 2021, Geneva, Switzerland Sun and Foley, et al.

9 CONCLUSION
PenShaft is a battery free augmentation for passive capacitive pens.

Users can perform whole-shaft and on-pen interactions with Pen-

Shaft, enabling a wide variety of applications. Our validation study

found all but two PenShaft interactions have a recognition rate over

95%. We demonstrate that our augmentation to a capacitive pen

can support a wide range of pen-based interactions, including the

ability to engage with hotkeys, menus, and image manipulations,

directly via the pen shaft.

PenShaft is a flexible medium through which application design-

ers can directly embed novel interactive capabilities using a pen,

with many future avenues for investigating PenShaft interaction,

and for improving the device itself.

REFERENCES
[1] Apple. 2020. Apple Pencil. https://www.apple.com/apple-pencil/

[2] Xiaojun Bi, Tomer Moscovich, Gonzalo Ramos, Ravin Balakrishnan, and Ken

Hinckley. 2008. An exploration of pen rolling for pen-based interaction. In

Proceedings of the 21st annual ACM symposium on User interface software and
technology. 191–200.

[3] Rachel Blagojevic and Beryl Plimmer. 2013. CapTUI: geometric drawing with

tangibles on a capacitive multi-touch display. In IFIP Conference on Human-
Computer Interaction. Springer, 511–528.

[4] Peter Brandl, Clifton Forlines, Daniel Wigdor, Michael Haller, and Chia Shen.

2008. Combining and measuring the benefits of bimanual pen and direct-touch

interaction on horizontal interfaces. In Proceedings of the working conference on
Advanced visual interfaces. 154–161.

[5] Dan Burnett, Paul Coulton, and Adam Lewis. 2012. Providing both physical

and perceived affordances using physical games pieces on touch based tablets.

In Proceedings of the 8th Australasian Conference on Interactive Entertainment:
Playing the System. 1–7.

[6] Liwei Chan, Stefanie Müller, Anne Roudaut, and Patrick Baudisch. 2012. Cap-

Stones and ZebraWidgets: sensing stacks of building blocks, dials and sliders

on capacitive touch screens. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2189–2192.

[7] Youngjun Cho, Andrea Bianchi, Nicolai Marquardt, and Nadia Bianchi-Berthouze.

2016. RealPen: Providing realism in handwriting tasks on touch surfaces using

auditory-tactile feedback. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology. 195–205.

[8] Lisa A Elkin, Jean-Baptiste Beau, Géry Casiez, and Daniel Vogel. 2020. Manipula-

tion, learning, and recall with tangible pen-like input. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems. 1–12.

[9] Nicholas Fellion, Thomas Pietrzak, and Audrey Girouard. 2017. FlexStylus: Lever-

aging bend input for pen interaction. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology. 375–385.

[10] Timo Götzelmann and Daniel Schneider. 2016. CapCodes: Capacitive 3D printable

identification and on-screen tracking for tangible interaction. In Proceedings of
the 9th Nordic Conference on Human-Computer Interaction. 1–4.

[11] Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer, Oskar

Bechtold, Steve Hodges, Matthew S Reynolds, and Joshua R Smith. 2017. Finding

common ground: A survey of capacitive sensing in human-computer interaction.

In Proceedings of the 2017 CHI conference on human factors in computing systems.
3293–3315.

[12] Tovi Grossman, Ken Hinckley, Patrick Baudisch, Maneesh Agrawala, and Ravin

Balakrishnan. 2006. Hover widgets: using the tracking state to extend the ca-

pabilities of pen-operated devices. In Proceedings of the SIGCHI conference on
Human Factors in computing systems. 861–870.

[13] Khalad Hasan, Xing-Dong Yang, Andrea Bunt, and Pourang Irani. 2012. A-

coord input: coordinating auxiliary input streams for augmenting contextual

pen-based interactions. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 805–814.

[14] KenHinckley, Michel Pahud, Hrvoje Benko, Pourang Irani, François Guimbretière,

Marcel Gavriliu, Xiang’Anthony’ Chen, Fabrice Matulic, William Buxton, and

Andrew Wilson. 2014. Sensing techniques for tablet+ stylus interaction. In

Proceedings of the 27th annual ACM symposium on User interface software and
technology. 605–614.

[15] Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Rodenhouse,

Andy Wilson, Hrvoje Benko, and Bill Buxton. 2010. Pen+ touch= new tools. In

Proceedings of the 23nd annual ACM symposium on User interface software and
technology. 27–36.

[16] Kohei Ikeda and Koji Tsukada. 2015. CapacitiveMarker: novel interaction method

using visual marker integrated with conductive pattern. In Proceedings of the 6th

Augmented Human International Conference. 225–226.
[17] Nikhita Joshi and Daniel Vogel. 2019. An Evaluation of Touch Input at the Edge of

a Table. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–12.

[18] Sven Kratz, Tilo Westermann, Michael Rohs, and Georg Essl. 2011. CapWidgets:

tangile widgets versus multi-touch controls onmobile devices. In CHI’11 Extended
Abstracts on Human Factors in Computing Systems. 1351–1356.

[19] Ernst Kruijff, Saugata Biswas, Christina Trepkowski, Jens Maiero, George Ghinea,

and Wolfgang Stuerzlinger. 2019. Multilayer haptic feedback for pen-based

tablet interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–14.

[20] I Scott MacKenzie, Abigail Sellen, and William AS Buxton. 1991. A comparison

of input devices in element pointing and dragging tasks. In Proceedings of the
SIGCHI conference on Human factors in computing systems. 161–166.

[21] Fabrice Matulic and Moira C Norrie. 2013. Pen and touch gestural environment

for document editing on interactive tabletops. In Proceedings of the 2013 ACM
international conference on Interactive tabletops and surfaces. 41–50.

[22] Microsoft. 2020. Surface Pen. https://www.microsoft.com/en-us/p/surface-

pen/92FP8Q09QHXC?ICID=SurfaceAccCat_Hero1_SurfacePen_010120

[23] Gary Perelman, Marcos Serrano, Christophe Bortolaso, Celia Picard, Mustapha

Derras, and Emmanuel Dubois. 2019. Combining tablets with smartphones

for data analytics. In IFIP Conference on Human-Computer Interaction. Springer,
439–460.

[24] Ken Pfeuffer, Jason Alexander, and Hans Gellersen. 2016. Partially-indirect

bimanual input with gaze, pen, and touch for pan, zoom, and ink interaction. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
2845–2856.

[25] Ken Pfeuffer, Ken Hinckley, Michel Pahud, and Bill Buxton. 2017. Thumb+ Pen

Interaction on Tablets.. In CHI. 3254–3266.
[26] Gonzalo Ramos,Matthew Boulos, and Ravin Balakrishnan. 2004. Pressure widgets.

In Proceedings of the SIGCHI conference on Human factors in computing systems.
487–494.

[27] Jun Rekimoto. 2002. SmartSkin: an infrastructure for freehand manipulation on

interactive surfaces. In Proceedings of the SIGCHI conference on Human factors in
computing systems. 113–120.

[28] Jun Rekimoto and Eduardo Sciammarella. 2000. Toolstone: effective use of the

physical manipulation vocabularies of input devices. In Proceedings of the 13th
annual ACM symposium on User interface software and technology. 109–117.

[29] Hugo Romat, Nathalie Henry Riche, KenHinckley, Bongshin Lee, Caroline Appert,

Emmanuel Pietriga, and Christopher Collins. 2019. ActiveInk: (Th) Inking with

Data. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–13.

[30] Martin Schmitz, Jürgen Steimle, Jochen Huber, Niloofar Dezfuli, and Max

Mühlhäuser. 2017. Flexibles: deformation-aware 3D-printed tangibles for capaci-

tive touchscreens. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. 1001–1014.

[31] Hyunyoung Song, Hrvoje Benko, Francois Guimbretiere, Shahram Izadi, Xiang

Cao, and Ken Hinckley. 2011. Grips and gestures on a multi-touch pen. In

Proceedings of the SIGCHI conference on Human Factors in computing systems.
1323–1332.

[32] Minghui Sun, Xiang Cao, Hyunyoung Song, Shahram Izadi, Hrvoje Benko, Fran-

cois Guimbretiere, Xiangshi Ren, and Ken Hinckley. 2011. Enhancing naturalness

of pen-and-tablet drawing through context sensing. In Proceedings of the ACM
International Conference on Interactive Tabletops and Surfaces. 83–86.

[33] Yu Suzuki, Kazuo Misue, and Jiro Tanaka. 2009. Interaction technique for a

pen-based interface using finger motions. In International Conference on Human-
Computer Interaction. Springer, 503–512.

[34] Daniel Vogel and Ravin Balakrishnan. 2010. Direct pen interaction with a con-

ventional graphical user interface. Human–Computer Interaction 25, 4 (2010),

324–388.

[35] Daniel Vogel and Géry Casiez. 2011. Conté: multimodal input inspired by an

artist’s crayon. In Proceedings of the 24th annual ACM symposium on User interface
software and technology. 357–366.

[36] Geoff Walker. 2014. Part 1: Fundamentals of Projected-Capacitive Touch Tech-

nology. Intel Corporation, SID Display Week 14 (2014), v1.

[37] Yizhong Xin, Xiaojun Bi, and Xiangshi Ren. 2011. Acquiring and pointing:

an empirical study of pen-tilt-based interaction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 849–858.

[38] Xingya Xu, Jinxi Liao, and Hirohito Shibata. 2017. Drawing in talking: Using pen

and voice for drawing system configuration figures in talking. In Proceedings of
the 25th International Display Workshops (IDW’17). Fukuoka, Japan.

[39] Neng-Hao Yu, Li-Wei Chan, Seng Yong Lau, Sung-Sheng Tsai, I-Chun Hsiao,

Dian-Je Tsai, Fang-I Hsiao, Lung-Pan Cheng, Mike Chen, Polly Huang, et al.

2011. TUIC: enabling tangible interaction on capacitive multi-touch displays. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
2995–3004.

[40] Robert Zeleznik, Andrew Bragdon, Ferdi Adeputra, and Hsu-Sheng Ko. 2010.

Hands-on math: a page-based multi-touch and pen desktop for technical work

https://www.apple.com/apple-pencil/
https://www.microsoft.com/en-us/p/surface-pen/92FP8Q09QHXC?ICID=SurfaceAccCat_Hero1_SurfacePen_010120
https://www.microsoft.com/en-us/p/surface-pen/92FP8Q09QHXC?ICID=SurfaceAccCat_Hero1_SurfacePen_010120

PenShaft: Enabling Pen Shaft Detection and Interaction for Touchscreens AH2021, May 27–28, 2021, Geneva, Switzerland

and problem solving. In Proceedings of the 23nd annual ACM symposium on User
interface software and technology. 17–26.

[41] Yang Zhang, Michel Pahud, Christian Holz, Haijun Xia, Gierad Laput, Michael

McGuffin, Xiao Tu, Andrew Mittereder, Fei Su, William Buxton, et al. 2019.

Sensing posture-aware pen+ touch interaction on tablets. In Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems. 1–14.
[42] Jian Zhao, R William Soukoreff, and Ravin Balakrishnan. 2015. Exploring and

modeling unimanual object manipulation on multi-touch displays. International
Journal of Human-Computer Studies 78 (2015), 68–80.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pen-Based Interactions
	2.2 Feedthrough Capacitance Sensing

	3 Pen Shaft Characteristics
	3.1 Basic Pen Shaft Detection
	3.2 Design Constraints
	3.3 On-Pen Interaction
	3.4 Combining Pen Shaft and Touch Interaction

	4 Fundamental Interactions
	4.1 Stationary
	4.2 Shaft + Drag
	4.3 Shaft + Rotate
	4.4 Shaft Click
	4.5 Shaft Click + Hold
	4.6 Shaft Slide

	5 Validation Study
	5.1 Participants
	5.2 Apparatus
	5.3 Tasks
	5.4 Study Design
	5.5 Procedure

	6 Results
	6.1 Stationary
	6.2 Shaft Drag
	6.3 Shaft Rotate
	6.4 Shaft Click
	6.5 Shaft Click + Hold
	6.6 Shaft Slide

	7 Applications
	7.1 Screen Splitting
	7.2 Colouring Application
	7.3 2D Object Manipulation
	7.4 Enhanced Drawing Application

	8 Discussion
	8.1 Validation Results
	8.2 Design Considerations and Limitations
	8.3 Future Work

	9 Conclusion
	References

