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to object movement in depth, which puts the object at all those 
positions along the mouse ray, where contact and non-collision 
assumptions are met. 

We first review relevant previous object manipulation work. Then 
we discuss the overall design space and introduce our new 
interaction methods. In the following, we present implementation 
details and describe our user studies. Finally, we discuss the 
results and mention potential future work. 

2. RELATED WORK 
There has been substantial research in the field of object 
manipulation in 3D user interfaces. 

Many mappings of 3- or 6DOF input device movements to object 
manipulation have been proposed. Ware et al. [41] introduced the 
bat, a 6DOF device with a natural one-to-one mapping. Hachet et 
al. [12] introduced the 6DOF Control Action Table, designed for 
immersive large display environments. The GlobeFish and 
GlobeMouse techniques [9] used a 3DOF trackball for 3D 
manipulation. Bérard et al. [5] compared the mouse with three 
3DOF input devices in a 3D placement task and identified the 
mouse superior for accurate placement. Vuibert et al. [40] 
compared contactless mid-air manipulation with a Phantom and 
found mid-air manipulation faster but less accurate. Masliah et al. 
[25] studied the allocation of control in 6DOF docking and 
identified that rotational and translational DOFs are controlled 
separately. All techniques mentioned in this paragraph require 3D 
input devices, which currently do not afford the level of accuracy 
and precision of a modern mouse. 

Many touch-based 3D manipulation techniques have been 
developed. Hancock et al.’s [13] multi-touch techniques provide 
3D interaction within limited depth. Rotate’ N Translate (RNT) 
[22] offers integrated control of translation and rotation through a 
single touch-point. Reisman et al. [30] presented a screen-space 
method that provides direct 2D and 3D control. Martinet et al. [23] 
proposed two multi-touch techniques. Users preferred the Z-
technique, which permits depth positioning. A later improvement 
separated translation and rotation [24]. Herrlich et al. [16] 
presented two techniques that integrate translation and rotation. 
Au et al. [1] presented a set of multi-touch gestures for 
constrained 3D manipulation. In general, the input mappings for 
touch-based 3D methods require learning and do not support 
accurate manipulation. 

Another approach to 3D manipulation is based on widgets [8][34], 
which encapsulate 3D geometry and behavior. Such widgets are 
now prevalent in 3D CAD software. Mine et al. [27] presented 
hand-held widgets, i.e., 3D objects with geometry and behavior 
that appear in the user's virtual hand. Schmidt et al. [32] presented 
a system that automatically aligned widgets to axes and planes 
determined by a users’ stroke. 

Some 3D manipulation systems use 2D input devices, typically the 
mouse. Bier [6] proposed snap-dragging, which snaps the 3D 
cursor to object features close to the cursor using a gravity 
function. Van Emmerik [37] proposed a technique where the user 
can perform 3D transformations in a local coordinate system 
through control points. Venolia [38] presented “tail-dragging”, 
where the user drags an object as it were attached to a rope. With a 
“snap-to” functionality, other objects also attract the manipulated 
object. Kitamura et al. [21] proposed a “magnetic metaphor” for 
object manipulation, which aims to simulate physical behaviors, 
including non-penetration. In most of these techniques, the local 
coordinate system for object movement must be explicitly 
controlled by the user. 

Building on Object Associations [7], Oh et al. [28] presented a 
sliding algorithm, where the object follows the cursor position 
directly and slides on any surface behind it, i.e., the moving object 
always stays attached to other objects. This form of sliding creates 
associations automatically, and these associations are not limited 
to predefined horizontally or vertically aligned surfaces. 
Compared to click-to-place methods, e.g., [7], sliding provides 
better visual feedback as the result of a (potential) placement is 
continuously visible. For targets in contact, Oh et al. compared 
sliding with axis-widgets and found that sliding is significantly 
more efficient for novices. Yet, Oh et al.’s sliding method lacks 
direct access to object movement in the third DOF. The authors 
identified that for some tasks users have to slide an object on a 
sequence of surfaces to reach a desired “layer” in depth, which is 
not always easy to understand, see Figure 3. 

2.1 Contributions 
The main contributions we present here are: 

 SHIFT-Sliding, which generalizes sliding to support 
floating and interpenetrating objects. 

 A new method to map 2D input to 3D object translation 
based on the coordinate system of the surface that the 
object was last in contact with. 

 A new DEPTH-POP interaction method that addresses the 
inherent depth ambiguity in sliding algorithms. 

 Comparative evaluations of the new techniques. 

3. SYSTEM AND INTERACTION DESIGN 
In this section, we discuss the fundamental assumptions that our 
new object manipulation techniques build on. We target novice 
users without CAD knowledge. We focus on a desktop-based user 
interface with a mouse and a keyboard, as this provides high 
performance in both speed and accuracy. A mouse also helps to 
keep our system easy to learn and use by novices, as many are 
used to this interaction device. Yet, the interaction for DEPTH-POP 
and SHIFT-Sliding is so simple and direct, that it could even be 
applied to touchscreens, as mentioned in the discussion section. 

3.1 Design Assumptions 
We use a single perspective view, as this corresponds best to how 
novices are usually presented with 3D content [42]. We do not use 
stereo, as perspective and occlusion are usually sufficient to 
accurately judge an object’s 3D position and visibility [39]. In our 
system, we assume that objects are by default in contact with other 
objects and do not interpenetrate them. Moreover, we choose not 
to enable manipulation of objects when they are invisible. Here, 
we detail the reasoning behind our design assumptions. 

1) The manipulated object stays by default in contact with the rest 
of the scene. As recognized by Teather et al. [36] and Stuerzlinger 
et al. [35], floating objects are exceptional on our planet, as 
(almost) all objects are in contact with other objects in the real 
world. Also, the exact position of a floating object is harder to 
perceive accurately, as there are fewer references to judge against. 
Such objects are also harder to manipulate because more DOFs 
need to be controlled [20]. In the default sliding mode of our 
system, whenever an object would float, we automatically put the 
object back into contact with the first surface behind it. With our 
new SHIFT-Sliding method, we enable the user to override this. 
When there is nothing behind an object, it will slide parallel to the 
screen until something appears behind it. 

2) The manipulated object does not interpenetrate the scene by 
default. In the real world, objects do not interpenetrate each other 
without explicit actions, such as drilling a hole. To avoid 
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graduate students from the local university population. We did not 
screen participants for 3D/gaming experience. Our participants 
had varying game expertise, with 58% being regular gamers and 
42% playing games only rarely. There was a 5-minute training 
session before the study, which introduced participants to the 
techniques in a playground environment, but did not include any 
version of the experimental tasks. 

 

 
Figure 7. Top: The SHS condition with four views. The one-
view condition uses only the bottom left view in full screen. 
The transparently shown target pose is floating above the 

floor. Bottom: The LCS condition with four views. The target 
position is around the pillar. 

7.2.2 Experiment Design 
We designed a 3D object positioning experiment and asked 
participants to move an object to a target position in various 
scenes. When the user positioned the object in the target, we 
measured the completion time and relative distance from the ideal 
target position. We recorded all actions of each user. The 
experiment had a 2 (techniques) x 2 (displays) x 2 (alignment) 
design. The order of technique, display, and alignment conditions 
was counter-balanced to avoid learning effects. The first technique 
uses a 3-axis widget aligned to the local coordinate system of the 
object. We call this technique LCS. With LCS, the user can drag 
either the three axes or the corresponding planes to move the 
object, as in most 3D editing software. The second technique is 
our new SHIFT-Sliding algorithm. We call this technique SHS here 
for brevity. The first display condition used four views (one 
perspective and three orthogonal views), corresponding to the 
standard user interface in 3D editing software. The second 
condition uses only a single perspective view. Figure 7 top shows 
the SHS condition with four views. 

As discussed before, we designed our experiment to focus on 
floating objects. To investigate the effect of object alignment with 
the scene, the tasks were composed of two subsets, corresponding 
to aligned or rotated poses relative to the world coordinate system. 
The object orientations in the aligned condition were aligned with 
the three axes in the world coordinate systems. In the rotated 
condition, objects were rotated 45 degrees on all three axes 
relative to the world coordinate system. The effect of such object 
alignment had not been investigated in previous work. Each task 
condition had 5 trials, with different objects and scenes. The target 
positions were positioned so that movement along all three axes 
was necessary. On average the movement distance along each axis 
corresponded to a third of the viewport size (in the orthogonal 
views). Each user performed all trials in both two task conditions 
with all techniques and displays, corresponding to a total of 40 
(5x2x4) trials for each user. We asked the participants to perform 
the tasks as quickly and as accurately as possible. 

7.2.3 User Study Results 
We used linear mixed models (with repeated measures) to 
incorporate subject variability. A critical value α = 0.05 was used 
to assess significance. The results showed that SHS (M=33.31 
seconds, SE=1.85) is significantly faster than the industry standard 
LCS (M=38.56, SE=1.88), OneView (M=31.37, SE=1.55) is 
significantly faster than FourView (M=40.50, SE=2.12), and the 
aligned condition (M=31.99, SE=1.71) is significantly faster than 
the rotated one (M=39.89, SE=2.00). See Table 1 and Figure 8. 

In terms of completion time, all interactions were significant: 
SHS-OneView is faster than SHS-FourView and LCS-OneView. 
SHS-rotated and LCS-aligned are both faster than LCS-rotated. 
FourView-aligned and OneView-rotated are both faster than 
FourView-rotated. 

A Tukey-Kramer’s test shows that for aligned targets, SHS-
OneView (M=25.58 seconds) is not significantly different from 
LCS-FourView (M=23.80). For rotated targets, SHS-OneView is 
significantly faster than all other combinations. 

In terms of target distance, technique did not have a significant 
effect. FourView (M=0.065, SE=0.007) had a significantly smaller 
distance than OneView (M=0.220, SE=0.017). Alignment did not 
have a significant effect. There were no significant interactions on 
target distance. 

Table 1. Linear mixed model analysis results for completion 
time and distance for study 1. 

Source 2(1) time Sig 2(1) distance Sig 

Tech 4.73 * 0.30 ns 

View 14.32 *** 19.24 * 

Align 10.72 ** 0.56 ns 

Tech*View 4.41 * 1.30 ns 

Tech*Align 17.33 *** 0.01 ns 

View*Align 6.44 * 1.25 ns 

Tech*View*
Align 15.60 *** 0.11 ns 

ns/ms = not/marginally sig., *,**,*** = p<0.05,0.01,0.001. 

Nine of 12 participants found SHS easy to use. Eight participants 
prefer the SHS technique over LCS. Additionally, we got very 
positive feedback, see the discussion. Those who did not prefer 
SHS stated that the need to hold SHIFT down makes coordination 
slightly harder, but more practice might help. 
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some users had issues with the idea that object movement is along 
the cursor ray. To address these issues, when an object is lifted up, 
we now draw a line with markers equal to the bounding box size 
(projected in the normal direction) to indicate height in SHIFT-
Sliding, see Figure 1. When the user slides an object away from 
the initial lift position, we show additional lines in the local 
coordinate system that connect the object’s current and lift 
position, see Figure 7 top. This provides strong perspective cues, 
which further help the user to better judge the object’s position in 
3D. To clearly indicate that an object floats, we replace the semi-
transparent rectangle for contact visualization with a small circle. 
Unlike interactive shadows [15], this circle is not interactive. For 
push-to-back DEPTH-POP actions we also show (dark blue) guides 
to help the user understand the 3D movement better, see Figure 1. 

8. DISCUSSION 
Sliding keeps the manipulated object by default in contact with the 
remainder of the scene. The assumption is true for most scenes in 
the real world, and thus facilitates object movement in many 
scenes. SHIFT-Sliding adds the new ability to have objects float or 
interpenetrate. Moreover, SHIFT-Sliding automatically derives a 
local coordinate system from the last known contact surface, 
which makes it easy to position objects in space relative to other 
objects, without having to explicitly set a local coordinate system. 

Results from the first study show that SHIFT-Sliding is easy to use 
and, for floating objects, 16% faster than the widget-based 
approach, the current industry standard. Together with Oh et al.’s 
results [28], this means that SHIFT-Sliding is globally faster than 
the widget-based method, regardless if the target position is in 
contact or not. Given the frequency of widget-based positioning in 
the 3D workflow, this means that SHIFT-Sliding can result in 
substantial time savings for practitioners. We got very positive 
feedback from the participants, where some even commented 
along the lines of: “I wish I had this in 3DS Max”. Moreover, 
SHIFT-Sliding in a single perspective view is never significantly 
worse than the widget-based approach. With SHIFT-Sliding, users 
received enough depth cues to complete the tasks in the single 
perspective view. They found it easy to find an appropriate plane 
to start sliding with the SHIFT key, even for complex surfaces. In 
fact, we observed that it does not matter that much where in a 
given 3D movement task users start to use the SHIFT key to lift the 
object. For rotated target poses, SHIFT-Sliding was at least 29% 
faster than any widget-based condition. Widget-based 
manipulation also suffered with rotated targets, as dragging in the 
(rotated) widget coordinate system causes movement in more than 
one direction in the world coordinate system, which is harder to 
understand for users. Thus, SHIFT-Sliding effectively merges the 
freedom of widget-based manipulation with the efficiency of 
sliding. This fundamentally improves 3D object manipulation with 
2D input devices. 

The second study shows that SHIFT-Sliding with DEPTH-POP is 
more efficient, 81% faster, and 67% more accurate than the 
widget-based technique, as it automatically determines valid 
object positions in depth. The (seemingly) simple mapping to 
mouse-wheel actions together with our accelerated 
implementation greatly simplifies moving objects in depth and 
radically accelerates the associated tasks. DEPTH-POP facilitates 
even more challenging tasks, such as fitting a complex object 
around another one. 

Results from both studies show that the OneView condition is on 
average more efficient than FourView, but less accurate. Based on 
our observations during the study, users might have tried to be 
more accurate with FourView display, at the expense of efficiency. 

Also, with widget-based manipulation, FourView was faster for 
aligned targets, yet OneView faster for rotated targets. We are not 
certain that this last finding holds up, as in the orthogonal views of 
the FourView widget condition a third of the axis controllers did 
not always work correctly with rotated objects in the study. While 
users were able to complete the tasks, we recognize that the faulty 
controllers may have had a limited negative effect for this specific 
condition. Yet, participants had experienced this issue in the 
training session and thus learned to use the other views and/or 
controllers. Moreover, based on our observations during the study, 
we believe that the impact of this issue was overshadowed by the 
fact that users struggled (much) more with the challenges posed by 
a locally rotated 3D coordinate system. 

In both studies, the participants commented that more practice 
would help. It would be interesting to measure the learnability of 
our new methods in a long term study. To address potential issues 
around having to hold the SHIFT key down during SHIFT-Sliding, 
one option would be to use the SHIFT key similar to a toggle [19]. 

8.1 Other Reflections 
As there are only two interaction modes in our system, we can 
easily adapt our technique for a touchscreen interface. As is 
standard in most touch interfaces, the user can select and slide an 
object with a single finger. A second touch/hold can then serve as 
an activation event for SHIFT-Sliding to float an object. A flick of a 
second finger can be mapped to DEPTH-POP actions, depending on 
the direction of said flick. The second finger could be either a 
finger of the other hand or the same hand, as in recent work [31]. 

If the selected object has multiple contact points, the sliding 
behaviour depends on the contact points and their normal vectors. 
If the object slides across two identical table surfaces that are 
positioned side-by-side, the normal vectors and contact planes are 
the same. Thus the object can smoothly slide from one table to the 
other. If the object slides on a table surface towards a wall, the 
normal vector for the new contact will be different. In this case, 
the object would collide and we pop the object to the front (of the 
wall). Then, it will slide on the wall. Previous work, e.g., [28], has 
already shown that multiple (compatible) contacts can be used to 
slide an object. 

In our system users control translational and rotational DOFs 
separately during manipulation [25]. We choose to keep object 
orientation static during sliding. Alternatively, we could also 
dynamically change the objects’ orientation with the normal 
vector of the sliding plane, thus keeping the same surface of the 
manipulated object in contact with the scene. This could be 
provided as a separated mode. 

Ayatsuka et al. [2] already identified that manipulation via 
interactive shadows is unnatural, since three projections are 
needed. Yet, their penumbrae method [2] has also the drawback 
that penumbrae scale non-linearly with object height. The shadows 
in our system are not interactive. In the work of Glueck et al. [11], 
the shaded inner region of the base coarsely indicates the height of 
objects. Yet, as reported by Heer et al. [14], circular area 
judgments are not that accurate. The length of their “stalks” shows 
object heights directly – but is still perspectively foreshortened. 
We instead show markers at regular intervals to facilitate quick 
perception of object height. 

As mentioned before, we disable back-face sliding. Yet, we could 
also temporarily enable such sliding in our system in some 
situations. One potential scenario is to permit the user to put an 
object in contact with a back surface with DEPTH-POP and slide 
along it. This would not cause the inappropriate mapping issue 
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discussed before. Whenever the object loses contact, i.e., starts 
floating or collides we would then transition to basic “front” 
sliding. 

3D scanning a real scene yields point clouds. Converting such 
point clouds to geometry requires extra work. If the application 
scenario requires the user to place synthetic objects into a scanned 
scene, sliding can be used directly on the point clouds. For this, 
we only need normal vectors for each sample point. Then the 
contact point and sliding plane can potentially change at every 
frame during slides. SHIFT-Sliding also works on point clouds. 
However, DEPTH-POP only works if the samples form reasonably 
dense layers. With DEPTH-POP it is possible to place the object 
inside the “body” of a point cloud, i.e., locations where the normal 
vector of the contact point is pointing away from the user. To 
avoid this, it is better to limit sliding only to front-facing points. 

We accelerate most of the computations through the GPU. We use 
the frame buffer for most of the components in the system, 
including collision detection. For simplicity, we chose to use an 
image-based technique for identifying collisions, but any method, 
which provides information about the position, normal vector, and 
interpenetration distance where the collision occurs, suffices. 

9. CONCLUSION 
We presented two novel 3D positioning techniques that are 
efficient and easy to use. We extend basic sliding with the new 
SHIFT-Sliding and DEPTH-POP methods. The results of the user 
studies showed that for novice users the new methods are more 
efficient for 3D positioning compared to the standard widget-
based approach. Both methods profoundly enhance the ease and 
efficiency of 3D manipulation with 2D input devices. 

In the future, we plan to explore if rendering front layers 
transparent can aid the manipulation of invisible objects, based on 
previous work [10][29]. Also, we intend to look at new methods 
for manipulation with multiple constraints. 

The current implementation of DEPTH-POP can slow down in 
scenes with high depth complexity on lower-end graphics 
hardware. In scenes with many hidden layers, the large amount of 
small fragments could lead to a huge amount of solutions. Many 
of those solutions might be meaningless for interaction. In the 
future, we will optimize the algorithm to deal better with such 
cases through appropriate pruning. 
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